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Abstract
In a quantum revival, a localized wave packet re-forms or ‘revives’ into a
compact reincarnation of itself long after it has spread in an unruly fashion
over a region restricted only by the potential energy. This is a purely
quantum phenomenon, which has no classical analog. Quantum revival and
Anderson localization are members of a small class of subtle interference
effects resulting in a quantum distribution radically different from the classical
after long time evolution under classically nonlinear evolution. However, it is
not clear that semiclassical methods, which start with the classical density
and add interference effects, are in fact capable of capturing the revival
phenomenon. Here we investigate two different one-dimensional systems,
the infinite square well and Morse potential. In both the cases, after a long
time the underlying classical manifolds are spread rather uniformly over phase
space and are correspondingly spread in coordinate space, yet the semiclassical
amplitudes are able to destructively interfere over most of coordinate space
and constructively interfere in a small region, correctly reproducing a quantum
revival. Further implications of this ability are discussed.

PACS numbers: 03.65.Sq, 42.50.Md

1. Introduction

The phenomenon of ‘quantum revival’ attracted much attention after it was first studied in
quantum electrodynamics [1, 2]. The evolution of a quantum wave packet in a general smooth
potential has at least three regimes. First, an initially localized packet will evolve following
classical mechanics for a time, in the sense that the mean position and momentum of the wave
packet follow classical laws. More than that, the spreading of the wave packet follows an
analogous classical distribution with an appropriate initial position and momentum densities.
This is the Ehrenfest regime.
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After further evolution, after the wave packet becomes delocalized, interference effects
may become important, causing the classical distribution and the quantum wave packet to
have quite different details. Semiclassical methods, however, are expected to be working well
[3–6]. They are based solely on classical information, but incorporate interference effects by
assigning an amplitude and phase for the multiple classical paths which connect to each final
position:

ψ(x, t) =
∑

n

√
Pn(x, t) eiφn(x,t)/h̄, (1)

where Pn(x) is the classical probability density for the nth way of reaching x that gives the
initial classical manifold and φn(x, t) is the classical action along the nth path of reaching
x. The Born interpretation, namely that ψ(x, t) is a probability amplitude, dictates that the
wavefunction should go as the square root of the classical probabilities in the correspondence
limit.

After a very long period of time, many classical periods in the case of an oscillator, the
quantum wave packet will reverse its seemingly unorganized delocalized oscillation to neatly
rebuild into its initial form. This is the known quantum revival, the third regime. Quantum
revival has been widely investigated in atomic [7–10] and molecular [11–13] wave packet
evolution and other quantum mechanics systems [14–18]. The work of Mallalieu et al [7] on
the three-dimensional hydrogen atom is related to the present paper. An excellent review on
wave packet revival is given by Robinett [19]. Precursors to the full revival also exist, in which
other organized probability distributions develop [19]. The question addressed in this paper
is: is the third revival regime also semiclassical? May we think of revival in semiclassical
terms after all, i.e. classical mechanics with phase interference included? It is a large order
for semiclassical sums to self-cancel almost everywhere where the classical density is large,
with the exception of one region where the revival is occurring.

Time-dependent semiclassical methods are exact in the limit of short time, being
equivalent to the short time limit of the quantum propagator. Increasing time can only degrade
the results. Many times, the number of terms in the sum, equation (1), can become very large,
and in fact the number of terms grows exponentially in chaotic systems. This in itself does
not spell the breakdown of semiclassics. In earlier work on chaotic systems, Tomsovic et al
[4] showed that semiclassical amplitudes were doing well when more than 6000 terms were
needed in the sum. Other works justified the unexpected accuracy of the semiclassical results
[5]. Later, Kaplan [6] gave an ingenious analysis of the breakdown with time in the case of
chaotic systems, which built on the earlier analyses [5], indicating that the classical chaos
rather surprisingly aided accurate semiclassical propagation. The implication was that even
Anderson localization was describable semiclassically, albeit with an astronomical number of
terms in the sum, equation (1). Quantum revival in a potential well does not involve chaotic
spreading in phase space, and thus it would conceivably be more difficult to describe correctly
semiclassically than chaotic dynamics, justifying the arguments in the above references about
the benefits of chaotic flow.

The revival phenomenon has no purely classical analog. At best it is a semiclassical
effect, described in terms of equation (1) [20]. The classical analog of a localized wave packet
will be a continuous density of trajectories in phase space, well localized but consistent with
the uncertainty principle. In an inharmonic oscillator, these trajectories occupy a distribution
of energies and hence frequencies. The distribution spreads and begins to wind itself up
on a spiral (see below), with many branches at a typical position. A smooth distribution of
trajectories with a range of velocities and positions, after spreading evenly into the available
space, will never converge again on one locale. This seems quite contradictory to the quantum
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result. Semiclassical theory can bridge the gap between the classical and quantum field, and
provide a simple and intuitive way to understand the subtle issue of quantum revival.

In this paper, we study the quantum revival in both an infinite square well and a Morse
potential system. These two cases are quite different in detail. The square well is locally
linear, interrupted by discontinuities which are due to reflections at the walls. The Morse
potential is more typical, arriving at its nonlinear evolution smoothly. Semiclassical results
are analytic whenever the dynamics is ‘linear’. Examples are the free particle, the linear
ramp potential and the harmonic oscillator. In each case, current positions and momenta are
the linear functions of initial positions and momenta. The square well is not in fact a linear
system because of reflections at the walls. However, locally, the classical manifolds evolve
linearly, suffering truncation due to the reflections. Interestingly, the square well is a case with
(globally) nonlinear time evolution clearly showing revivals, yet because of the locally linear
nature of the classical dynamics the semiclassical formula turns out to be exact. When the
semiclassical method is approximate, the delicate cancellation of amplitudes over wide areas
is in question, and we show here by example that it is still accurate enough to give the revivals.

2. Theory

Time-dependent semiclassical methods face difficulties when applied to long revival time
calculations. By their very nature, revivals cannot happen until the classical manifolds have
folded over on themselves many times, which means that the dynamics is in the deeply
nonlinear regime. Although nothing keeps semiclassical methods from working under these
conditions in principle, and practice the error can only grow with time.If one is looking at a
subtle phenomenon, such as near exact cancellation of semiclassical amplitudes over a wide
area, the small errors could be a problem.

A convenient way to implement the semiclassical method is via cellular dynamics
[23], which has been proven to be accurate and efficient for longtime implementation of
semiclassical calculations. The basic idea is to linearize the classical dynamics in zones small
enough to make the linearization classically correct. The zones are typically much smaller than
Planck’s constant in area. In the following, a brief summary of cellular dynamics is given.
In the next section we discuss the revival in both infinite square well and Morse potential
systems. Further speculations are given in the Conclusion section.

The starting point of the semiclassical method is the Van Vleck–Gutzwiller (VVG)
propagator [24]:

G(x, x0; t) =
(

1

2π ih̄

)1/2 ∑
j

∣∣∣∣∂2Sj (x, x0)

∂x∂x0

∣∣∣∣
1/2

exp

[
iSj (x, x0)

h̄
− iνjπ

2

]

=
(

1

2π ih̄

)1/2 ∑
j

∣∣∣∣ ∂x

∂p0

∣∣∣∣
−1/2

exp

[
iSj (x, x0)

h̄
− iνjπ

2

]
, (2)

where the action S(x, x0) = ∫ t

0 dt ′[p(t ′)ẋ(t ′) − H(p(t ′), x(t ′))] is the integral of the
Lagrangian along classical trajectory from x0 to x, and the Maslov index ν counts the number
of caustic points along this trajectory. The sum over j runs over all the classical trajectories
connecting x0 to x; in other words, it counts in contributions from all the stationary phase
points. Cellular dynamics begins with a transformation of the propagator by applying the
speciality of the δ function:∑ 1

(∂xt/∂p0)|x=xt

=
∫

dp0δ(x − xt (x0, p0)). (3)
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Here, xt (x0, p0) is the final position originating from the initial point (x0, p0). The VVG
propagator can now be written as

G(x, x0; t) =
√

1

2π ih̄

∫
dp0

∣∣∣∣ ∂xt

∂p0

∣∣∣∣
1/2

x0

δ(x − xt (x0, p0)) exp

[
iS(x0, p0)

h̄
− iυπ

2

]
, (4)

with the change of the action S as a function of (x0, p0). Then we can get the semiclassical
wavefunction

ψ(x, t) =
∫

dx0G(x, x0; t) ψ (x0, 0)

=
(

1

2π ih̄

)1/2 ∫
dx0

∫
dp0

∣∣∣∣ ∂xt

∂p0

∣∣∣∣
1/2

δ(x − xt ) eiS/h̄−iνπ/2ψ(x0, 0). (5)

It would be difficult to evaluate the integral directly since it is highly oscillatory. However,
cellular dynamics handles this difficulty by using integration techniques similar in spirit
to Filinov methods [25], by dividing the region into small cells, inserting the identities
1 ≈ η

∑
n

exp[−α(x − xn)
2] within both x and p spaces. Then we have

ψ(x, t) ≈ ηη′ ∑
n

∑
m

∫
dx0

∫
dp0

∣∣∣∣ ∂xt

∂p0

∣∣∣∣
1/2

δ(x − xt ) eiS/h̄−iνπ/2

× e−α(x0−xn)
2−β(p0−pm)2

e−γ (x0−xi )
2+iki (x0−xi )

2
, (6)

where the initial wavefunction ψ(x0, 0) = exp[−γ (x0 − xi)
2 + iki(x0 − xi)

2] is used. If both
α and β are taken to be sufficiently large, and for sufficiently many cells, this expression
becomes identical to the usual primitive semiclassical propagator. Thus, even though it
resembles an initial value representation, it is not. We can linearize the classical dynamics
around the central trajectory for each cell running from the initial phase space point (xn, pm),
obtaining its contribution to the propagation of initial wavefunction.

In some ways cellular dynamics resembles Miller’s initial value representation (IVR) [26],
but there are important differences. The IVR is actually numerically superior, in that if the
integral is performed the result is not the ‘primitive semiclassical’ Van Vleck result, but rather
a uniformized version which is capable of describing some classically forbidden processes and
of smoothing out some semiclassical singularities. In contrast, cellular dynamics is a direct but
numerically convenient implementation of the primitive semiclassical Green’s function. For
further reading, a rather general summary of the relationship between different expressions of
propagator is given by Kay [27], where another frequently used Heller–Herman–Kluk–Kay
IVR [28] is also included. The goal of the present paper is to test the efficacy of the primitive
semiclassical propagator, but implementing an IVR would be an interesting study.

The linearization is implemented by approximating the classical action S with the second-
order Taylor expansion and the final position x (x0, p0) with first order [23], namely

S ≈ Snmt + (pnmtm22 − pm)(x0 − xn) + pnmtm21(p0 − pm) + 1
2m12m22(x0 − xn)

2

+ 1
2m11m21(p0 − pm)2 + m12m21(x0 − xn)(p0 − pm) (7)

xt (x0, p0) ≈ xnmt + m21(p0 − pm) + m22(x0 − xn),

where Snmt , xnmt , pnmt are the classical action, final position and momentum of a trajectory
originating from (xn, pm) respectively, and

M =
(

m11 m12

m21 m22

)
=

(
∂pt/∂p0 ∂pt/∂x0

∂xt/∂p0 ∂xt/∂x0

)
(8)
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is the Jacobian matrix of the corresponding dynamical transformation [23]. The substitution
of equation (7) into (6) will simplify the quadrature into Gaussian integration

ψ(x, t) ≈ ηη′ ∑
n

∑
m

∫
dx0

∣∣∣∣ ∂xt

∂p0

∣∣∣∣
−1/2

e−a(x0−xn)
2+b(x0−xn)+c, (9)

with the coefficients

a = α + γ + β

(
m22

m21

)2

− i

h̄

(
1

2

m11m
2
22

m21
− 1

2
m12m22

)
,

b = 2βm22

m2
21

(x − xnmt ) − 2γ (xn − xi) + iki +
i

h̄

[(
m12 − m11m22

m21

)
(x − xnmt ) − pm

]
,

c = − β

m2
21

(x − xnmt )
2 − γ (xn − xi)

2 − iνπ

2
+ iki(xn − xi)

+
i

h̄

[
Snmt + pnmt (x − xnmt ) +

m11

2m21
(x − xnmt )

2

]
. (10)

Equation (6) can now be analytically evaluated:

ψ(x, t) ≈ ηη′ ∑
n

∑
m

√
π

am21
eb2/4a+c, (11)

and it is easy to implement.

3. Results and discussions

In this section, we will analyze the quantum revival in the infinite square well and the Morse
potential in detail. First we look at the infinite square well system, which has been well studied
at many levels and from many points of view [16–18]. The system Hamiltonian is

H = p2/2m + V (x), V (x) =
{

0, 0 < x < L

∞, x � 0, x � L,
(12)

and by using the eigenstate expansion

ψ(x0, t) =
∞∑

n=1

Cnϕn(x0) e−iEnt/h̄, Cn =
∫ L

0
ψ(x0, t)ϕ

∗
n(x0) dx0 (13)

(En, ϕn(x0) are the eigenvalue and eigenfunction of the infinite square well, respectively)
we show the schematic evolution of an initial Gaussian wave packet ψ(x0, 0) =√

γ /π exp[−γ (x0 − xi)
2 + iki(x0 − xi)] in the well in figure 1(a). Here the parameters

γ = 0.02, ki = 2, xi = 50, L = 80 are taken, and m = 1, h̄ = 1 are used throughout
the paper for simplicity. And for the infinite square well system, the revival time can be
analytically determined as Trev = 4mL2/h̄π [17]. As we see from figure 1(a), the wave packet
delocalizes and spreads all over the well after first several classical periods. At half the revival
time, t = Trev/2, the wavefunction is nearly a mirror image of the initial wavefunction. At
the revival time Trev the wavefunction is perfectly rebuilt into the initial wave packet. In the
following we do it in a semiclassical way to describe this surprising relocalization of the wave
packet.

There is an analytical semiclassical solution for the infinite square well, even though it
is a globally nonlinear system. The semiclassical propagator G(x, x0; t) can be written as a
summation of contributions from all the stationary phase points which correspond to classical
trajectories connecting x0 and xt [30, 31]. As shown in figure 1(b), these trajectories can

5
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(a) (b)

Figure 1. (a) Gaussian wave packet evolves in an infinite square well at different times.
(b) Classical trajectories starting from x0 and end at xt at time t. xt,−1, xt,1, xt,2 are image
points of xt , the trajectories 1©, 3© bounce off the wall an odd number of times and 2©, 4© an even
number of times.

be divided into two groups; they are reflected by the wall an odd and even number of times
respectively. So we have

G(x, x0; t) =
√

m

2π ih̄t

[ ∞∑
n=−∞

exp

(
im(−x − x0 + 2nL)2

2h̄t
− i|2n − 1|π

)

+
∞∑

n=−∞
exp

(
im(x − x0 + 2nL)2

2h̄t
− i|2n|π

)]

=
√

m

2π ih̄t

[ ∞∑
n=−∞

exp

(
im(x − x0 + 2nL)2

2h̄t

)

−
∞∑

n=−∞
exp

(
im(−x − x0 + 2nL)2

2h̄t

)]
. (14)

The exponents of two exponential functions here are composed of the classical action and
Maslov phase, and one should note that in the hard wall limit the Maslov phase is a multiple of π

instead of π/2. Then using the Jacobi theta function ϑ3(z, T ) = ∑∞
n=−∞ exp[iπ(n2T + 2nz)]

and its important property [32]

ϑ3(z, T ) =
√

i/T exp(z2/iπT )ϑ3(z/T ,−1/T ), (15)

we simplify equation (14) into

G(x, x0; t) = 1

2L

[
ϑ3

(
x − x0

2L
,
−πh̄t

2mL2

)
− ϑ3

(
x + x0

2L
,
−πh̄t

2mL2

)]

= 1

2L

∞∑
n=−∞

exp

(−in2π2h̄t

2mL2

)[
exp

(
inπ(x − x0)

L

)
− exp

(−inπ(x + x0)

L

)]

= 2

L

∞∑
n=1

exp

(−in2π2h̄t

2mL2

)
sin

(nπx0

L

)
sin

(nπx

L

)
. (16)
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This is identical to the usual quantum propagator in the infinite square well. The semiclassical
propagator at the revival time t = Trev = 4mL2/h̄π can thus be written as

G(x, x0; Trev) = 1

2L

∞∑
n=−∞

exp

[
inπ(x − x0)

L

]
− 1

2L

∞∑
n=−∞

exp

[−inπ(x + x0)

L

]

= δ(x − x0) − δ(x + x0), (17)

where the discrete Fourier transform of the δ function is used. Then we have the semiclassical
wavefunction in the square well region 0 < x < L:

ψ(x, Trev) =
∫ L

0
dx0G(x, x0; Trev)ψ(x0, 0)

=
∫ L

0
dx0[δ(x − x0) − δ(x + x0)]ψ(x0, 0)

=
∫ L

0
dx0δ(x − x0)ψ(x0, 0)

= ψ(x, 0), (18)

namely the revival occurs. Equations (14), (17) and (18) explicitly show that the revival of the
wave packet is essentially an effect of interference between classical trajectories, only those
trajectories bouncing off the boundary an even number times contribute to the revival, whereas
others interfere destructively and hence give no contribution.

Now we come to see a more general system, the Morse potential; it is also a widely used
model in many fields. There is no exact solution for wave packet evolution in the Morse
potential; we give the precise numerical results below using FFT and semiclassical results by
using cellular dynamics. We take V (x) = D[1 − exp(−λx)]2 with D = 150, λ = 0.288;
its revival time Trev = 2mπ/(h̄λ)2 can be derived by expanding the wavefunction with
eigenfunctions of the Morse potential, too (see appendix A). Approximating the Morse
potential V (x) with the Taylor series to second order V (x) ≈ Dλ2x2 = mω2x2/2
leads to a coarse classical period Tcl = 2π/ω = 2π/

√
2Dλ2/m, and then the revival

time here is about 60 times of the classical period. With α = 5000, β = 312.5
being used in the calculation, the semiclassical wavefunctions originate from ψ(x0, 0) =√

γ /π exp[−γ (x0 − xi)
2](γ = 2, xi = 3.5) are depicted in figure 2.

Comparing to the FFT exact wavefunctions we can see that semiclassical wavefunctions
agree well for different timescales, showing the capability of semiclassical approximation in
long-time nonlinear dynamics. In figure 2, we also plot the normalized purely classical density
derived by removing the phase terms eiS/h̄−iνπ/2 in equation (5), since the semiclassical result
consists of different classical trajectories with the square root of classical probabilities and
phase information, omitting the interference effect between the trajectories namely removing
phase terms will lead to a purely classical result. It is remarkable that despite the fact that the
classical densities are spread all over the available space, the semiclassical approximation can
still build a localized wave packet.

In order to demonstrate how the information carried by classical trajectories yields
a revival of the wave packet, we first Wigner transform the initial Gaussian distribution
ψ(x) = √

γ /π exp[−γ (x − xi)
2],

W(x, p) = 1

πh̄

∫ ∞

−∞
ψ∗(x − s)ψ(x + s) ei2ps/h̄ ds

= γ

π2h̄

∫ ∞

−∞
e−γ (x−xi−s)2

e−γ (x−xi+s)2
ei2ps/h̄ ds

7
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Figure 2. Wavefunctions and classical distribution probabilities in the Morse potential at times
Trev/2 and Trev. All the functions plotted in this figure are normalized. Solid line: semiclassical
wavefunctions; dashed line: exact FFT wavefunctions calculated by the split–operator method
[29]; dotted line: classical distribution probability.

= γ

π2h̄

∫ ∞

−∞
e−2γ (x−xi )

2−2γ s2+i2ps/h̄ ds

=
√

γ

2π3h̄2 e−p2/2γ h̄−2γ (x−xi )
2
, (19)

which is itself a Gaussian, and then watch the evolution of this Wigner distribution in phase
space. The corresponding starting swarm of classical trajectories emerges as an elliptical
disk in phase space; as time evolves this ellipse stretches and twists, forming a large whorl.
(Indeed, the time evolution of the phase space is that of an area preserving twist map.) In
figure 3, we plot its final phase space distribution at the revival time t = Trev; the color of each
point indicates phase information carried by corresponding classical trajectory.

The coordinate space density is the projection of the phase space density onto coordinate
space, including the addition of phase which here is given by color. The phase changes along
the whorl too. It changes rapidly over the shallow region of potential but varies slowly at
both the ends. The buildup in coordinate space can only occur where there are trajectories
in phase space which are of the same or similar color lined up above and below the given
region of coordinate. In appendix B, we prove that the classical action difference between
the two points equals the enclosed area of the manifold. This explains why there are similar
classical actions near the turning point regimes at both the ends (see figure 3(a)) due to the
small enclosed areas. The abrupt change of colors at the turning points is due to the change in
the Maslov phase.

According to equation (1), the semiclassical wavefunction ψ(x, Trev) comes from the
contributions of stationary phase points which are produced by the intersection of the manifold
with the position state |x〉, and it will give out big amplitude if these stationary phase points
have large magnitude Pn(x, t) and similar phases. The blurred phase space diagram in
figure 3(b) clearly shows the monochromatic bright colored regions indicating adjacent
classical manifolds with similar phases, whereas other parts are averaged out and give neutral

8
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(a) (b)

Figure 3. (a) The transient phase space diagram for the time evolved initial Gaussian (the Wigner
transform of the initial state) evolves in the Morse potential to the revival time Trev. The color
represents different values of the semiclassical phase (including the classical action S and the
Maslov phase) modulo [0, 2π ]. (b) The Gaussian blurred version of (a). Solid line: semiclassical
wavefunction at time Trev; dashed line: Morse potential.

(This figure is in colour only in the electronic version)

gray colors. Combined with the large magnitude Pn(x, t) they carry, the regions of saturated
color correctly produce the wave packet revival.

One could still doubt why we do not get a high amplitude wavefunction at the left end
of the whorl, where a caustic pileup of manifold at a similar position occurs corresponding
to the classical probability density which goes as the inverse of the momentum. Moreover,
as we have just said, the phase is not changing there, except for the abrupt Maslov phase. To
compare the difference, we write the formula of the wavefunction into a compact form:

ψ(x, Trev) =
∫

dx0G(x, x0; Trev)ψ(x0, 0)

=
√

1

2π ih̄

∫
dx0

∑
j

∣∣∣∣ ∂x

∂p0

∣∣∣∣
−1/2

exp

[
iSj (x, xi)

h̄
− iυjπ

]
ψ(x0, 0)

=
∫

dx0R eiφ =
∑

n

Rn eiφn�x0. (20)

The integral can be done numerically by a finite sum of a complex vector. We divide x space
into hundreds of sections, and evaluate the vector separately in each section. By drawing each
vector from the tips of the previous one, the summation form a chain, and the line drawn from
first point to the end point represent the quadrature. We draw two chains respectively for
x = −1.6 and x = 3.1 in figure 4.

For the low amplitude region x = −1.6, the chain circles continuously, and results
in a small total vector (see figure 4(a)). This indicates that the phase of stationary phase
points changes rapidly and continuously, leading to destructive interference betweenclassical
trajectories and a small amplitude of the wavefunction. A different situation appears in
figure 4(b) for the position x = 3.1. Here the small phase difference between stationary points
accumulates a persistent growth of the total vector; namely the constructive interference
produces high amplitude of wavefunction. The probability density is about 25 times larger for
region (b) than (a).
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(a) (b)

Figure 4. (a) Vector chain for x = −1.6. (b) Vector chain for x = 3.1.

Figure 5. Classical manifold. The area contained between intersections of the manifold p(q) and
a position state (vertical line q = qt ) is Q1.

4. Conclusions and discussion

Whenever and wherever they apply, semiclassical methods can be extremely useful not only in
computations but also in providing an underlying intuition for quantum phenomena. Here we
have shown that something so subtle as a quantum revival still has classical underpinnings, as
seen by the successful construction of the phenomenon using only classical mechanics as input.
Semiclassical methods are accurate enough to describe the quantum revival phenomenon. The
quantum revival phenomenon does not stem from an accumulation of classical trajectories.
Rather, the classical trajectories are rather uniformly spread, and it is through destructive
interference of the semiclassical amplitudes that the wavefunction is canceled in most places.
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Appendix A

For the Morse potential V (x) = D[1 − exp(−λx)]2, one can express the time-dependent
wavefunction in terms of eigenfunctions ϕn(x), via

ψ(x, t) =
∞∑

n=0

anϕn(x) e−iEnt/h̄, (A.1)

where the eigenvalues are En = α(n + 1/2) − β(n + 1/2)2 with α = h̄λ
√

2D/m, β =
h̄2λ2/2m. The revival condition ψ(x, T ) = ψ(x, 0) requires

EnT = [α(n + 1/2) − β(n + 1/2)2]T = 2Mnπ, (A.2)

where Mn are integers. Make a subtraction of consecutive n of equation (A.2) gives

(α − 2βn − 2β)T = 2Knπ, (A.3)

with Kn are also integers. Then apply the subtraction (A.3) again, and obtain the equation for
the shortest revival time Trev as

2βTrev = 2π. (A.4)

So we have the revival time Trev = π/β = 2mπ/(h̄λ)2.

Appendix B

We prove the standard result that the difference of the classical actions SA and SB equals
to the shaded area Q1. First we look at points B and C. From the classical action formula
S = ∫

p(q) dq +
∫

H(p, q) dt we have ∂S/∂q = p; thus the action difference from B to C is

SC − SB =
∫ C

B

∂S

∂q
dq =

∫ C

B

p dq = area Q2. (B.1)

Then, in a similar way

SA − SB =
∫ A

B

∂S

∂q
dq =

∫ A

B

p dq = area Q1. (B.2)
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